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Basics Of MagLev Transportation

The purpose of this chapter is to describe the basics of MagLev
(Magnetic Levitation) transportation systems and then to go on to
describe how spin wave technology can be utilized to improve the design
of the magnetic systems used for levitation and propulsion in these
systems. The primary advantage of spin wave technology over
conventional electromagnetic systems is that the MagLev rails or
MagLev guide ways can be dispensed with and the transportation
compartment can be made to push against spin waves present in any
type of ground material. This claim sounds extraordinary but in this
chapter it will be explained in simple terms how it is possible.

There are two main processes taking place in MagLev systems:
levitation and propulsion. Electromagnetic systems are used for both
functions. Usually, each electromagnetic system works independently
of the other but some systems combine the electromagnetic designs
into one system that both lifts and propels. Both the levitation and the
propulsion functions are based on utilizing the push of opposing magnetic
fields and/or the pull of attracting magnetic fields.

Here are some links to give you the basics of the EM
(electromagnetic) theory involved.
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Click on the little diagrams at these first two links:

♦ http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/
magfie.html#c1

♦ http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/
faracon.html#c1

At the following link just skip down to Chapter 31 if you want:

♦ http://maxwell.byu.edu/~spencerr/websumm122/web.html

If your browser has Java enabled then try these links:

♦ http://www.micro.magnet.fsu.edu/electromag/java/
magneticlines2/

♦ http://www.micro.magnet.fsu.edu/electromag/java/faraday2/

♦ http://www.micro.magnet.fsu.edu/electromag/java/lenzlaw/

♦ http://www.micro.magnet.fsu.edu/electromag/java/
pulsedmagnet/

MagLev systems usually use either LIM (Linear Induction Motor)
or (LSM (Linear Synchronous Motor) propulsion so here are some
sites about these motors:

♦ http://unofficial.capital.edu/admin-staff/dalthoff/lim.html

♦ http://www.theproductfinder.com/motors/elemot.htm

♦ http://www.nctransportation.com/LinearMotor.html

♦ http://www.prod.sandia.gov/cgi-bin/techlib/access-control.pl/
1995/951268.pdf

♦ http://www.baldor.com/pdf/brochures/br1800/Section6.pdf

♦ http://www.calinear.com/

♦ http://www.xrefer.com/xrefs.jsp?xrefid=508565

♦ http://www.ecn.purdue.edu/ESAC/Example_Simulations/
example.whtml
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Here are some links to give you an overview of various MagLev
systems:

♦ http://www.skytran.net/press/sciam01.htm

♦ http://www.maglev2000.com/works/how-04.html

♦ http://www.phy.uct.ac.za/courses/phy209s/projects/
EDWDAV004/edwdav004.htm

♦ http://www.rtri.or.jp/rd/maglev/html/english/
maglev_frame_E.html

♦ http://www.llnl.gov/str/Post.html

♦ http://www.pa.msu.edu/people/roberson/Inductrack/
post.pdf_1.pdf

♦ http://www.pa.msu.edu/people/roberson/Inductrack/
ieee1099.pdf

♦ http://www.pa.msu.edu/people/roberson/Inductrack/
Inductrack_files/frame.htm

Now that you have an idea of what MagLev levitation and
propulsion is all about, we will explain how spin wave technology can
be utilized to design an improved MagLev system. Some basic design
changes are made to utilize the characteristics of spin waves. Later
MagLev design examples are given that will seem impractical using
conventional magnetic levitation equipment but this is just to give
preliminary insight into how it can be done using spin waves.

Basics of MagLev Transportation
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Propagation Velocity in MagLev Systems

To describe how to use spin waves for a MagLev system,
comparisons are made to a MagLev system using LSMs (Linear
Synchronous Motors) or LIMs (Linear Induction Motors). The forward
speed of the bogie (train compartment) of a MagLev system that uses
LSMs is determined by the propagation velocity of the electromagnetic
fields of the guide rail coils that push against the magnets of the bogie.
The frequency and wavelength of the electromagnetic fields that do the
pushing have to be considered.

The velocity of an electromagnetic wave in free space is referred
to as “c”.

This velocity is constant and is approximately c = 3*108 meters/
second. This velocity is established by the coefficient of inductive
permeability and coefficient of capacitive permittivity of space itself.

Diagram of an Electromagnetic Wave in Free Space

The velocity of an electromagnetic wave moving along a single
wire is about 95% of the velocity in free space. This is due to the
inductance down the length of the wire and the capacitive coupling of
the surface of the wire to free space. Keep in mind that even though
electromagnetic signals move along the wire at almost the velocity of
light, the current of electrons within the wire will have an average drift
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in one direction or the other at a much lower velocity in reaction to the
changing electromagnetic signals on the wire. This is called drift current.

Diagram of an Electromagnetic Wave in a Wire

The velocity of an electromagnetic wave in a coaxial cable is
slower still than an electromagnetic wave along a single wire. It is
typically around 65-75% of the velocity in free space. This is due to the
inductive and capacitive coupling to the coaxial shield. It takes more
time as a signal moves along the wire to charge up the capacitance
between the wire and the shield. There is also self inductance of the
center conductor and finally a mutual inductance with the shield such
that a changing magnetic field from the signal moving along the wire
induces current in the opposite direction in the shield. This in turn
generates its own magnetic field which induces a CEMF (counter
electromotive force) opposing and thus slowing the propagation of the
signal along the wire.

Diagram of an Electromagnetic Wave in a Coax Cable

The propagation velocity of an electromagnetic wave through a
series of large coils and large capacitors is slower still. This is due to the
much greater time it takes to charge up the capacitors and to overcome
the greater self-inductance of the coils.

Diagram of an Electromagnetic Wave in a Series
of Coils and Capacitors

For MagLev propulsion systems, the propagation of the signal
energizing the succession of coils along the guide rails can be slowed
down even more by simply switching on each coil in succession at the
rate desired.

Diagram of an Electromagnetic Wave of a
Series Switched Coils

In each of the above examples the propagation velocity gets slower
and slower and the physical wavelength of the electromagnetic wave
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gets shorter and shorter compared to the wavelength of the same
frequency electromagnetic wave in free space.

The system of electromagnetic coils and capacitors has the effect
of compressing the wavelength and slowing the propagation of the signal.
If the coil excitation frequency is 10 Hz (10 Hertz = 10 cycles per
second) for example, this equates to an electromagnetic wavelength in
free space of:

 (1 divided by (10 cycles per second))  x  (3x108 meters per second)
= 3x107 meters

This wave travels through space at a velocity of 3x108 meters per
second.

Diagram Comparing Wavelength in Free Space

to Wavelength in Series of Coils and Capacitors

If a MagLev system used a succession of coils and capacitors
along the MagLev guide rails then it is the propagation velocity of the
electromagnetic coil excitation signal that determines the velocity of the
bogie. In a MagLev system using LSMs the bogie will move exactly at
the propagation velocity. In a MagLev system using LIMs the bogie
will have a certain amount of slip and will travel at a somewhat slower
rate than the propagation velocity of the electromagnetic coil excitation
signal that pushes and pulls on the magnetic fields of the bogie.

It is necessary to be able to adjust the propagation velocity in
order to control the bogie velocity and this can be done in various ways.
Adjusting the capacitance between the coils can change the propagation
velocity but this alone is not very practical. One way to solve this problem
is to have a switched system in which the guide way coils can be
switched on and off in a faster or slower succession.

Another solution is to have a succession of excitation coils driven
by a succession of multiple phases of the same AC coil excitation signal.
This then becomes the same as a multi-pole rotary motor coil that has
been laid out flat. The multiple phases of a higher frequency coil excitation
signal will drive the excitation coils at a faster succession rate. The
propagation velocity of the coil excitation signal then becomes dependant
of the frequency of the excitation signal. This allows the bogie to be
easily accelerated by simply increasing the frequency of the coil excitation
signal. There will likely still be various values of capacitors switched in
along the succession of coils to maintain an optimum power correction

Propagation Velocity in MagLev Systems
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factor for various ranges of coil excitation frequencies. Also, only those
excitation coils will be driven that are where the bogie is at any particular
time rather than all the excitation coils along the whole length of the
guide rails.

Now let’s get back to analyzing the whole thing in terms of how it
can be implemented using spin waves to propel the bogie. For bogies
driven by LSMs, the wavelength of the coil excitation signal will match
the pitch (spacing between North-South-North-South poles) of the bogie
magnets. The bogie magnets have static magnetic fields that push and
pull against the magnetic fields of the drive coils along the guide rails.

Diagram of magnetic fields of bogie and guide rail coils

The North-South-North-South fields of the drive coils can be
thought of like teeth on a timing belt. It’s the propagation velocity of the
belt that matters and the pitch of the teeth will match the pitch of the
bogie magnets. Since the magnetic fields of the bogie magnets are static
they can be said to have a propagation velocity along the bogie of zero.
A more generalized equation for the bogie velocity would be as follows:

v1 = Propagation Velocity of Guide Rail Drive Coils’ Magnetic
Fields

v2 = Propagation Velocity of Bogie Magnetic Fields

vb = Bogie Velocity

vb = v2 – v1

This means that if the bogie’s magnetic fields propagation velocity
is zero then:

vb = v1

Also, if there are magnetic fields on the bogie moving at the same
rate and direction as the magnetic fields of the guide rail drive coils
then:

v1 = v2

vb = v1 – v2 = 0 so the bogie will not move. This is like walking at
the same speed but in the wrong direction on an escalator or an airport
moving walkway.

Animated diagram of bogie not moving but with
moving magnetic fields and guide rail coils magnetic fields
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Propagation Velocity in MagLev Systems

If the propagation velocity of the bogie’s magnetic fields is in the
opposite direction then the bogie velocity will be:

v2 = - v1

vb = v1 – (-v1) = 2 * v1

Animated diagram of bogie moving and with

moving magnetic fields and guide rail coils magnetic fields

Now consider a system where there are standing waves on the
drive coils such that the drive magnetic fields are toggling in North-
South orientation but that have a propagation velocity of zero.

Animated diagram of guide rail drive coils’ signal

and toggling drive coil magnetic fields

It is also possible for there to be standing waves on the bogie
magnetic field coils making bogie magnetic fields that are toggling in
North-South orientation but that have a propagation velocity of zero.

Animated diagram of bogie magnetic field coils’ signal

and toggling bogie magnetic fields

If both the bogie and the guide rail coils have standing waves then
there is a way to propel the bogie. The phase of the standing waves of
the bogie relative to the standing waves of the guide way drive coils can
be adjusted so that the two sets of magnetic fields push against each
other in one direction or the other depending on the direction and amount
of phase shift. However, once the phase shift causes the bogie to be
pushed to a new position, the phases will be back in alignment. To
maintain a phase shift, the bogie’s standing waves must not be perfect
standing waves but will need to have a small propagation velocity in
addition to being standing waves. Then the bogie’s velocity will equal
the propagation velocity of its partially standing waves/partially traveling
waves.

Animated diagram of toggling bogie magnetic
fields pushing against toggling guide rail coil magnetic fields



242



243

43

Levitating with Spin Waves

If you have studied the various web links about Faraday’s Law,
Lenz’s Law and the web links about various MagLev systems then
you should already understand the theory of MagLev levitation.
Modifications to these basic designs will be described to explain how it
would be done with spin waves. Repelling and/or attracting forces of
the guideway magnetic fields with the bogie magnetic fields will push or
pull a bogie up causing it to levitate.

There will be alternating magnetic field orientations along the
guideway and alternating magnetic field orientations of the bogie’s
magnetic fields. The phase of the bogie’s alternating magnetic fields
can be adjusted to control the amount of repulsive and attractive forces
with the magnetic fields of the guideway. Previously, the amount of
forward or reverse propulsion force on the bogie was described as
caused by adjusting the phase of the alternating magnetic fields. This is
still true. Now there will be another type of phase adjustment that can
be made to control the degree of levitation. To understand the difference
it is necessary to describe better how the magnetic fields of a guideway
and of a bogie are created using spin waves.

The magnetic fields of spin waves are caused not by current flow
of electrons but by the changing spin axis orientations of electrons. A
magnetic field can be created by the flow of electrons through a coil of
wire as has already been described.
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Diagram of coil of wire and its magnetic field

A magnetic field can also be created from many electron spin
axis orientations all pointing in a similar direction. Each individual electron
will already have its own little magnetic field associated with its own
particle spin characteristics.

Diagram of electron spin and its magnetic field

When all the spin axes orientations point in a similar direction then
it makes a large macroscopic magnetic field.

Diagram of many electron spins and their magnetic field

The electron’s spin axis also has a tendency to precess like a
gyroscope.

Animated diagram of an electron spin precessing
and its magnetic field

Many electron spin axes all precessing together at microwave
frequencies will send out microwave frequency electromagnetic waves.

Animated diagram of many electron spins precessing
and their magnetic field

For our application we want all the electrons to precess together
but we don’t want to make large microwave frequency electromagnetic
waves. There is a way to prevent this. For every electron that precesses
clockwise we will have an electron that precesses counter-clockwise.
The combined electromagnetic waves from these motions will cancel
each other except for waves of changing magnetic field orientation.

Animated diagram of two electrons’ spins
precessing opposite directions
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Both North poles point the same way and then both South poles
point that same way. Now we need many electron pairs doing the same
thing. It is not important that their precession axes all be pointing similar
directions but they do need to all lay in the same plane and precess in
phase at the same rate such that all the North poles point a particular
direction and then all the South poles point that same direction.

Animated diagram of many electron pairs precessing
opposite directions with various precession axis orientations

but all in the same plane

Now we have a magnetic field that alternates North-South-North-
South but it does not send out microwave frequency transverse
electromagnetic waves. These magnetic field waves can pull on similar
magnetic waves from the guideway that are alternating in phase.

Animated diagram in phase magnetic waves
and attractive forces

 Similarly, they can push against alternating magnetic fields from
the guideway that are of opposite phase.

Animated diagram of opposite phase magnetic
waves and repulsive forces

The phase changes associated with the attractive or repulsive
bogie levitating forces are demonstrated below using just a pair of
electrons of the guideway and one pair of electrons of the bogie.

Animated diagram of both pairs precessing in opposite directions
and sending out magnetic waves that are in-phase

Animated diagram of both pairs precessing in opposite
 directions and sending out magnetic waves that are

 45 degrees out of phase

Levitating with Spin Waves
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Animated diagram of both pairs precessing in opposite
directions and sending out magnetic waves that

are 90 degrees out of phase

Animated diagram of both pairs precessing in opposite
directions and sending out magnetic waves

that are 135 degrees out of phase

Animated diagram of both pairs precessing in opposite
directions and sending out magnetic waves that are

180 degrees out of phase

However, the magnetic forces between the two are only ever
attractive or repulsive if the magnetic fields diverge as opposed to being
completely homogeneous.

Before this line of explaining things continues, it may be necessary
to first explain more about naturally occurring alternating magnetic waves
within materials and to explain about diverging magnetic fields from
large bodies of material that are experiencing this phenomena. Please
read the next chapter, Diverging Alternating Magnetic Fields (Chapter
44).

Chapter 43
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Diverging Alternating Magnetic Fields

If a small magnetized sample of material is in a large magnetic
field and it has become oriented such that its magnetic field is oriented
with the large magnetic field, then it is not the strength of the large
magnetic field alone that determines how strongly the small magnetic
sample is attracted. Rather, it is also the amount of divergence of the
large magnetic field that determines how strongly the small sample is
attracted towards the diverging magnetic fields.

Diagram of sample in non-diverging magnetic field

Diagram of sample in diverging magnetic field

This same phenomena is true when the strong magnetic field is an
alternating magnetic field. If a small sample of material is radiating
magnetic waves that are in-phase with the magnetic waves of the
diverging magnetic field, then both the strength and the amount of
divergence affect how strongly the sample is attracted.

It is the natural tendency of paired electrons in orbitals around all
atoms to precess clockwise and counter-clockwise and to develop in-
phase magnetic waves among all of them. With a large body of atoms
like the Earth, all of these in-phase magnetic waves add in strength.
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However, this is not the only natural source of magnetic waves.
There are also extremely high frequency precessional motions of quarks
within protons and neutrons of all atoms. These motions generate their
own frequency of magnetic waves. These also have a natural tendency
to move to a state where all their magnetic fields alternate in phase.
The typical transverse electric field components normally induced are
cancelled due to the nature of the compensating precessional motions
for sets of quarks and for pairs of electrons. The total attractive force
of the alternating magnetic fields of various frequencies that remain
from all particle precessional motions within the Earth is equal to an
accelerating force of exactly 1G at sea level. In other words, gravitational
force can be explained as caused by the attraction among all matter as
a consequence of in-phase magnetic waves.

At any given distance out from the center of the Earth there will
not be perfect phase alignment among the magnetic waves that are all
at that exact distance from the center. Instead there will be spin waves
and spin temperature fluctuations of the otherwise perfect phase
alignment of these magnetic waves.

These magnetic waves are not the same as the following that you
may find if surfing the internet for “magnetic waves”:

♦ http://www.space.com/news/solarwind.html

♦ http://helios.gsfc.nasa.gov/solarmag.html

♦ http://www-solar.mcs.st-andrews.ac.uk/~robert/statement.html

♦ http://science.nasa.gov/newhome/headlines/ast08jul99_2.htm

♦ http://www.gsfc.nasa.gov/gsfc/spacesci/swind/swind.htm

♦ http://www.planetary.org/news/articlearchive/headlines/1999/
headln-071399.html

♦ http://history.nasa.gov/presrep99/pages/smithso.html

♦ http://science.nasa.gov/newhome/headlines/
ast02sep99_1.htm

The difference is that the magnetic waves described in the NASA
articles, as well as the other articles, are waves of changing magnetic
field intensity and orientation over periods of perhaps 300 seconds or
more. However, the magnetic waves described in this paper are oriented
along the same direction that the magnetic waves travel, completely
toggle in direction of orientation and toggle at extremely high frequencies.
The magnetic waves described in this chapter are radiating outward in

Chapter 44
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Diverging Alternating Magnetic Fields

all directions from gravitational centers as opposed to directions
somewhat related to the orientation of magnetic poles of a large body
like the sun.

The magnetic waves described in this chapter are present between
all matter all of the time. The waves have associated with them a slight
natural attractive force towards any centers of divergence. As more
mass accumulates at these centers this naturally causes the divergence
to increase. These diverging alternating magnetic waves have the
attributes we associate with gravity.
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Summary:
Potential of Spin Wave Technology

Signal Processing:
There are 2 basic forms of motion of all electrically charged

particles. Either they can change in position or change in spin axis
orientation. Much of electronics today is based on the first of these 2
forms of motion. Signal processing electronics can be advanced by
using devices based on the propagation of changing spin axis orientations.

Communications:
Almost all forms of radio communication today are based on the

radiation of electromagnetic waves from electrically charged particles
that move back and forth changing position. Communications technology
can be advanced by instead using electromagnetic waves radiated from
the precessional rotations of electrically charged particles. Fluctuations
can be induced in and propagate through the sea of electromagnetic
standing waves among all matter in the universe.

Power Generation:
It should be possible to build spin wave lasers and spin wave

electrical power generation devices. It should be possible to absorb
some of the energy present in standing waves among all matter and
convert it to electricity to power electrical equipment. This can be
accomplished through spin wave interactions with the electromagnetic
standing waves among all matter.

Propulsion:
It should be possible to create and sustain spin wave processes

within a flying vehicle that utilizes a metallic resonant cavity, also serving
as a “Faraday cage”. These spin wave processes can be used to shift
the phase of the precessional motions of all atomic particles of the
vehicle and its contents relative to the phase of standing waves radiated
to and from the precessional motions of all external matter. This can
create electromagnetic forces between vehicle and these standing waves
among all external matter. Force vectors can be controlled to lift and
propel the vehicle at very high speeds.
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