Site Map Send Email Home
Home
Publications
Spin Wave Technology CD Spin Wave Technology Book
Articles
Overview of Spin Wave Technology About Spin Waves About Spin Wave Lasers What Can Spin Wave Technology Do? Spintronics vs. Spin Wave Technology Particle Spin & Propulsion Spin Waves & Power Generation The Nature of Time Magnetic Levitation With Spin Waves The Poynting Vector of an Electron Spin, Pauli Exclusion, Compensated and Uncompensated
News
Aerospace Defense Research, Free Energy and Antigravity Possible Potential of Spin Wave Technology for the Future of Powered Flight Site Updates
Links
Lasers Magnetism & Magnetic Materials Electromagnetics Entropy Particle Spin, Spin Resonance & Spin Waves Academic Research into Inertia and Gravity General Reference Material Archive of all past links Gravity videos Gravitational Anomalies Gravity Patents
Products
RF Products
Downloads
File Downloads
About Us
About the Vasant Corporation Spin Wave Technology Global Market Assessment Government Patent Hoarding and Freedom


Search



Translations


English

Deutsch

France

Portuguese

Español

Italiano


Contact Us

Email us at: contactus at vasantcorporation dot com
Or send mail to:
 P.O. Box 151754
 Fort Worth, TX, 76108
 USA


Site Mirrors

USA
Great Britain
Australia pending





About Spin Wave Lasers


It may be easiest to explain this with a comparison between a simple traditional laser and a simple spin wave laser (magnon laser).

In a traditional laser, photons (discrete amounts of energy in the form of electromagnetic waves) are emitted when electrically charged particles move in step transitions from a location of higher potential energy to a location of lower potential energy. The amount of energy emitted as photons equals the difference in energy states. These events are stimulated to occur by other photons such that the emitted photons are in phase with the stimulating photons. These in turn stimulate more and more photons to be released from more charged particles that are in higher energy states as they fall to lower energy states.

Often electrons in orbitals around atoms are used. It is first necessary to have a population of electrons that are in higher energy states awaiting a stimulus to fall to a lower energy state. This is called a population inversion. There are various ways to get the electrons to move to orbitals that are of a higher energy state. One way is the pump in energy in the form of incoherent light, which are just electromagnetic waves of a variety of phases, frequencies and polarizations. Many electrons absorb this energy and move to higher energy state orbitals.

In the particular lasing materials used, these electrons have a natural tendency to fall to an orbital that is a lower energy state for the electrons but not their original lowest energy state. This intermediate state is called a metastable state and while in this state an external stimulus can cause the electrons to fall back to their original energy state. Now photons can stimulate the electrons to fall and at the same time emit photons themselves. These in turn stimulate more and more photons to be emitted. The photons are emitted in phase with the stimulating photons such that their amplitudes add together.

Here perhaps are better descriptions:
Federation of American Scientists/DOD/Navy/Laser Fundamentals
and here:
http://science.howstuffworks.com/laser1.htm

In a traditional laser, electrons will radiate photons (energy in the form of electromagnetic waves) from changing position in space from higher energy orbitals to lower energy orbitals. A spin wave laser (magnon laser) is based on the emission of energy in the form of electromagnetic waves from electrons with axial and orbital spin that transition from higher energy spin states to lower energy spin states. A magnon is a quasiparticle for the smallest quantum of spin wave energy similar to how a photon is the smallest quantum of light energy. In a magnetic material, if each spin orientation and associated magnetic dipole is not aligned with an external magnetic field then there is potential energy stored in that difference in orientation. When each individual magnetic dipole orientation moves to align with the external magnetic field this is a lower energy state. The energy lost is often described as propagating away through direct spin-lattice coupling but the energy lost can be made to radiate away as electromagnetic waves. This energy is lost as heat in a magnetic material where lasing is not occurring.

Similar to a tradition laser, it is first necessary to create a population inversion in which a large number of spins are in a metastable spin state. In this case, the metastable state is a higher energy state in which there is a natural tendency of the individual spins to reorient to a direction that is a lower energy state but they must first receive some stimulus to initiate the event. This is all related to the hysteresis characteristics of the particular magnetic material used as the lasing medium. Normally when a magnetic material is re-magnetized in some new direction the process occurs as disorganized avalanches of more and more magnetic domains until the whole sample is re-magnetized in some new orientation. In a spin wave laser this process involves a very ordered avalanche of spins transitioning to lower spin states.

In a spin wave laser with a population inversion of spin states, the individual spins will precess like little gyroscopes or tops. The stimulus to drop to a lower energy spin state comes in the form of electromagnetic waves that match the frequency of precession -- the Larmor frequency. The spins are stimulated to emit electromagnetic waves that are in phase with the stimulating electromagnetic waves.

Unlike a traditional laser, the phase of the simulating electromagnetic waves is more of an issue when the electromagnetic waves encounter all the spins of all the individual magnetic domains with spins that are in metastable states. In a spin wave laser the frequencies are lower and there is also more electromagnetic coupling between metastable spins.

Therefore, a spin wave laser is designed such that the phase is continuously shifting along the lasing medium. Coherent spin waves are made to propagate through the medium as spins are transitioning from higher to lower spin states. The magnetic lasing material is designed to enhance the development of coherent spin waves in preferred directions. The emission of electromagnetic radiation is in a rotating manner around a loop of magnetic material that is inside a circular reflector whereas in a traditional laser the electromagnetic radiation bounces back and forth between mirrors.

A traditional laser can be pumped with radiant light energy. A spin wave laser can be pumped with radiant heat energy. Radiant heat is just electromagnetic waves that are lower in frequency than visible light. This type of spin wave laser uses a magnetic lasing material with a Magnetocaloric Effect. It is operated near its Curie temperature. An external alternating magnetic field is used to sequence the lasing medium through various magnetic field strengths and orientations. This is discussed in more detail in the research papers for sale at this website.

[ Read more... ]


Home  |  Publications  |  Articles  |  News  |  Links  |  Products  |  Downloads  |  About Us


Copyright © 2016 Vasant Corporation - All rights reserved.




Related Links

· population inversion
· Federation of American Scientists/DOD/Navy/Laser Fundamentals
· http://science.howstuffworks.com/laser1.htm
· population inversion
· hysteresis characteristics
· disorganized avalanches
· precess
· Larmor frequency
· Magnetocaloric Effect
· Curie temperature


"Did You Know...?"

...the spin of a charged particle causes it to have a magnetic field like a small bar magnet?

Read more...